
© 2022 The Author(s). This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License  
(CC BY-NC 4.0), which permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided.  

“This article has been published in Gene Expression at https://doi.org/10.14218/GEJLR.2022.00003 and can also be viewed on the Journal’s website  
at https://www.xiahepublishing.com/journal/ge ”.

Gene Expression 2022 vol. 21(1)  |  2–8 
DOI: 10.14218/GEJLR.2022.00003

Review Article

Introduction
Liver cirrhosis represents an advanced stage of various chronic 
liver diseases. Chronic hepatitis B virus (HBV) or C virus (HCV) 
infection, alcohol overuse, and nonalcoholic fatty liver disease 
(NAFLD) are among the most common etiologies of cirrhosis. 
Liver dysfunction and portal hypertension in cirrhotic patients can 
lead to a wide spectrum of complications, such as ascites, gastro-

intestinal bleeding, hepatic encephalopathy, and bacterial infec-
tion.1,2 Liver cirrhosis is one of the leading causes of death glob-
ally and is responsible for 1 million deaths annually.1

The liver plays a fundamental role in the synthesis, storage, 
and metabolic processing of lipids/lipoproteins. Given the space 
limitation of this mini-review, the explicit and comprehensive 
information regarding key metabolic pathways and principle bio-
transformation routes pertinent to lipids/lipoproteins can be found 
elsewhere.3,4 When liver function is substantially impaired, lipid 
and lipoprotein homeostasis will undergo imbalance and lose 
maintenance.5 Multiple studies have acknowledged serum lipids 
as important risk factors for the progression of liver cirrhosis.6–8 
Collectively, this review article summarizes the accumulative un-
derstanding of the relationship between the serum lipids/lipopro-
teins profile and cirrhosis.

Pathophysiology and mechanism of lipid changes in cirrhosis
Since the underlying mechanism pertaining to lipid changes in 
cirrhosis is complicated and currently undergoing extensive in-
vestigations, we herein highlight several possible issues including 
gene polymorphisms, signaling pathways, the molecular basis, and 
emerging mechanism (Fig. 1). Alcohol abuse is a remarkable risk 
factor for alcoholic liver cirrhosis (ALC). In this regard, acetalde-
hyde dehydrogenase 2 (ALDH2) is the key rate-limiting enzyme 
responsible for alcohol metabolism, and the level of ALDH2 activ-
ity is intrinsically linked to the advent of alcohol-related liver dis-
ease. The most important single nucleotide polymorphism (SNP) 

The Clinical Significance of Lipids/Lipoproteins Impairment  
in the Context of Cirrhosis: An Updated Review

Binxin Cui1,2#, Wanting Yang2,3#, Gaoyue Guo2,3#, Xiaofei Fan2,3, Xiaoyu Wang2,3, Yangyang Hui2,3,  
Sipu Wang2,3, Kui Jiang2,3, Wentian Liu2,3, Junling Liu1,2*  and Chao Sun1,2,3*

1Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin, 
China; 2Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, China; 
3Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, China

Received: September 01, 2022  |  Revised: September 11, 2022  |  Accepted: September 24, 2022  |  Published: September 28, 2022

Abstract
The liver contributes substantially to the metabolic transformation and transport of lipids and lipoproteins. These bioactive 
substances represent a heterogeneous group of molecules with pivotal roles in diverse pathological processes as well as dis-
ease progression, the advent of complications, and the response to specific treatments in the context of cirrhosis. The present 
mini-review aims to summarize the underlying mechanisms regarding lipid changes across divergent circumstances. Recent 
evidence suggests the prognostic value of lipids/lipoproteins and their close relationship to an increased risk mortality among 
cirrhotic patients. However, more research regarding the development of risk stratification and therapeutic strategies based on 
altered lipid profiles in patients with cirrhosis is warranted.

Keywords: Lipid; Lipoprotein; Liver cirrhosis; Complication; Mortality; HDL-C.
Abbreviations: ADH1B, alcohol dehydrogenase-1B; ALDH2, acetaldehyde dehy-
drogenase 2; apoA-I, apolipoprotein A-I; apoE, apolipoprotein EDCV, daclatasvir; 
EV, esophageal varices; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; 
HCV, hepatitis C virus; HDL-C, high-density lipoprotein cholesterol; IL-6, inter-
lukin-6; LDL-C, low-density lipoprotein cholesterol; LP-Z, lipoprotein-Z; MELD, 
Model for End-stage Liver Disease; NASH, nonalcoholic steatohepatitis; PCSK9, 
proprotein convertase subtilisin/kexin type 9; PSVT, portal and/or splenic vein 
thrombosis; RAI, relative adrenal insufficiency; SNP, single nucleotide polymor-
phism; SOF, sofosbuvir; TC, total cholesterol; TG, triglyceride; THR-β, thyroid hor-
mone receptor beta; UGIB, upper gastrointestinal bleeding; VLDL, very-low-density 
lipoprotein.
*Correspondence to: Junling Liu, Department of Gastroenterology, Tianjin Medical 
University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic 
Area, Tianjin 300308, China. ORCID: https://orcid.org/0000-0001-5885-5931. Tel: 
+86-022-60362608, Fax: +86-022-27813550, E-mail: HG104223197@163.com; 
Chao Sun, Department of Gastroenterology, Tianjin Medical University General Hos-
pital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, 
China. ORCID: https://orcid.org/0000-0002-0380-7999. Tel: +86-022-60362608, 
Fax: +86-022-27813550, E-mail: chaosun@tmu.edu.cn
#These authors have contributed equally to this work and share first authorship.
How to cite this article: Cui B, Yang W, Guo G, Fan X, Wang X, Hui Y, et al. The 
Clinical Significance of Lipids/Lipoproteins Impairment in the Context of Cirrhosis: 
An Updated Review. Gene Expr 2022;21(1):2–8. doi: 10.14218/GEJLR.2022.00003.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.14218/GEJLR.2022.00003
https://crossmark.crossref.org/dialog/?doi=10.14218/ERHM.2022.00003&domain=pdf&date_stamp=2022-09-29
https://orcid.org/0000-0001-5885-5931
https://orcid.org/0000-0002-0380-7999
https://orcid.org/0000-0001-5885-5931
mailto:HG104223197@163.com
https://orcid.org/0000-0002-0380-7999
mailto:chaosun@tmu.edu.cn


DOI: 10.14218/GEJLR.2022.00003  |  Volume 21 Issue 1, September 2022 3

Cui B.X. et al: Lipid disturbance in cirrhosis Gene Expr

in the ALDH2 gene is the Glu504Lys polymorphism (SNP rs671, 
G>A, GAA>AAA), and the ALDH2 rs671 G>A SNP polymor-
phism has been proven to be a susceptibility site to develop ALC 
in the southern Chinese Hakka population.9 The levels of high-
density lipoprotein cholesterol (HDL-C), total cholesterol (TC), 
and apolipoprotein A-I (apoA-I) were higher among patients with 
ALC and the G/A genotype in comparison with those with the G/G 
genotype, while the levels of HDL-C and apoA-I were lower in 
patients with the G allele in comparison with those with the A al-
lele. Generally, ALDH2 can affect the serum lipid levels through 
the regulation of oxidative stress in vivo; therefore, gene variation 
may give rise to dyslipidemia.10,11 Another study in Japan showed 
that drinkers with the alcohol dehydrogenase-1B (ADH1B) His al-
lele had lower low-density lipoprotein cholesterol (LDL-C) levels 
than those with the Arg/Arg genotype.12 One possible explanation 
is the expedited clearance of acetaldehyde-modified very low-
density lipoprotein (VLDL) and reduced conversion of modified 
VLDL to LDL.13 The authors also found that both the ADH1B 
Arg/Arg and ALDH2 Glu/Lys dominant models were related to 
higher serum HDL-C levels and lower triglyceride (TG) levels, in 
particular, among alcoholic men. The impact of heavy drinking on 
apolipoprotein and lipoprotein-metabolizing enzymes can partially 
be attributed to the ADH1B and ALDH2 genotypes.12

Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a 
pivotal role in the metabolism of cholesterol and is responsible for 
facilitating the degradation of LDL-receptor in the lysosome and 
upregulating the plasma LDL-C level. In a cohort of ALC patients, 
PCSK9 expression did not show a positive correlation with the 
serum TC level.14 Regarding individual cholesteryl ester species, 

which were quantified by electrospray tandem mass spectrometry, 
a negative correlation between PCSK9 and cholesteryl ester 20:5 
was demonstrated. The expression of hepatic PCSK9 protein also 
was positively correlated with the expression of hepatic LDL-re-
ceptor protein. These findings suggest that liver function abnor-
mality appears to counteract the effect of PCSK9 on cholesterol 
metabolism among cirrhotic patients, but the specific mechanism 
of PCSK9 mediating the degradation of the LDL-receptor protein 
has not been fully elucidated.

The thyroid hormone receptor beta (THR-β) is mainly ex-
pressed in the liver, and its activation has been linked to reduced 
lipid and increased fat oxidation.15 A study has revealed that the 
levels of plasma TC were markedly higher in obese mice with non-
alcoholic steatohepatitis (NASH) and fibrosis than in lean controls, 
and a significant reduction in hepatic TC and TG were observed in 
mouse models in response to THR-β agonist treatment.16

There is a growing body of literature concerning the gut-liver 
axis on the development and progression of various liver diseases. 
For example, Chen et al. found that Firmicutes (the most common 
gut microbiota) and Blautia were remarkably decreased in chronic 
liver disease (mainly chronic hepatitis B subjects) and hepatocel-
lular carcinoma (HCC) patients compared to healthy individuals.17 
Moreover, the Spearman correlation analysis showed that the Fir-
micutes composition was positively associated with the HDL-C 
level and that the Blautia composition was positively associated 
with the TG and HDL-C levels. As reported previously, Blautia 
was proven to be inversely associated with visceral fat accumula-
tion among a healthy Japanese population.18 Another study indi-
cated that Collinsella had the strongest association with NASH.19 

Fig. 1. The underlying mechanism pertaining to lipid changes in cirrhosis appears to be complicated. Gene polymorphisms (single nucleotide polymor-
phisms) prone to the progression of cirrhosis and the abnormal expression of critical molecules involved in lipid (lipoprotein) metabolism or disruption 
regarding the gut-liver axis may be responsible for dyslipidemia in the context of cirrhosis. ADH1B, alcohol dehydrogenase-1B; ALDH2, acetaldehyde dehy-
drogenase 2; PCSK9, proprotein convertase subtilisin/kexin type 9; THR-β, thyroid hormone receptor beta.
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Moreover, Collinsella was positively related to the TG and TC 
levels as well as negatively related to the HDL-C level in patients 
with NASH, suggesting that Collinsella may affect the host lipid 
metabolism. Furthermore, Collinsella has been reported to be as-
sociated with obesity and circulating insulin levels, thus providing 
a possible mechanism by which Collinsella contributes to the pro-
gression of NAFLD.20

Risk of cirrhosis progression
Wang et al. have found that HDL-C is an independent indicator of 
the onset and development of HBV-related cirrhosis in obese pa-
tients.21 Patients with HDL-C levels <1.03 mmol/L had a 2.21-fold 
increased occurrence of cirrhosis. Likewise, a prospective obser-
vational cohort study by Rao et al. demonstrated that patients with 
HDL-C levels <36.4 mg/dL had a 6-fold higher risk of decompen-
sation within 1 year.22

Many studies have shown that the levels of serum lipids pro-
gressively decrease in alignment with the deteriorated liver func-
tion. For example, Sahlman et al. have investigated potential risk 
factors for advanced nonviral liver disease in the general popula-
tion and found that both HDL-C and non-HDL-C increased the 
risk for developing severe liver disease among men.23 In addition, 
Tauseef et al. have reported that a wide array of lipids, including 
TC, TG, VLDL, LDL-C, and HDL-C, decreased in correspond-
ence to chronic liver disease ranging from Child-Pugh class A to 
C.24 Likewise, another study has shown that the levels of TC and 
lipoprotein(a) were remarkably lower in cirrhotic patients with de-
compensated insults than in stable participants; and the levels of 
TC, LDL-C, HDL-C, and lipoprotein(a) were remarkably lower in 
cirrhotic patients with Child-Pugh class B/C compared with those 
with Child-Pugh class A.25 These findings were also corroborated 
by Trieb et al. in which HDL-C and apoA-I decreased with disease 
progression, regardless of the cirrhosis etiology.26 The baseline 
concentrations of HDL-C and apoA-I were significantly lower in 
patients with stable cirrhosis compared with healthy individuals, 
and they further decreased following the onset of acute decom-
pensation and acute-on-chronic liver failure. In contrast, Chrostek 
et al. have proposed that the fractions of cholesterol differ due 
to the etiology of liver cirrhosis.5 The concentrations of LDL-C 
and HDL-C have been demonstrated to be diminished in agree-
ment with the severity of liver damage in patients with non-ALC, 
whereas the TG concentration decreased among those with ALC. 
The decreased expression of HDL-C and LDL-C in the context 
of cirrhosis may be attributed to the impaired synthetic capability 
of apoA and B.27 As for the association between lipid metabolism 
and cirrhosis resulting from NAFLD, Li et al. have established a 
NAFLD-caused cirrhosis model in gerbils and denoted discrepan-
cies with respect to the TG and free fatty acids levels.28 Notably, 
these changes were apparent within the fibrosis stage, suggest-
ing that the advent of fibrosis can lead to impairment in lipopro-
tein synthesis and result in decreased TG export. Moreover, they 
showed that the cholesterol/HDL-C ratios increased constantly, 
induced by the high-fat and high-cholesterol diet, and had a good 
linear relationship with hepatic stellate cell activation and prolif-
eration. Taken together, the cholesterol/HDL-C ratios can be a con-
venient biomarker for diagnosing and predicting the progression of 
NAFLD fibrosis.

Apolipoprotein E (apoE) plays a critical role in lipoprotein me-
tabolism and immunoregulation.29 Three codominant alleles (E2, 
E3, and E4) in the apoE gene can result in six kinds of genotypes 
(E2/2, E2/3, E2/4, E3/3, E3/4, and E4/4).30 Intriguingly, Shen et al. 

have implicated that apoE, interleukin-6 (IL-6), and the frequency 
of the E3/3 genotype progressively increase, but IL-2 gradually 
decreases in alignment with the worsening severity of HBV-related 
disease.31 The serum levels of LDL-C are higher in the E3/4 and 
E4/4 phenotypes relative to the E3/3 or E2/3 phenotypes. Besides, 
high apoE levels are positively correlated with the IL-6 level and 
inversely correlated with the IL-2 level, indicating the immune ab-
normalities in HBV infection.

HBV infection is the most important cause for the develop-
ment of HCC in sub-Saharan Africa and Southeast Asia.32 Ren 
et al. have found that compared with patients with HBV-related 
cirrhosis, TC and LDL-C are upregulated in HCC accompanied 
by hepatitis B cirrhosis.33 Since both TC and LDL-C are mainly 
synthesized by the liver, it is proposed that the synthetic function 
of the liver appears to be better in the HCC group.

Lipid metabolism changes after HCV eradication
HCV infection is a major health problem worldwide and has a con-
siderable morbidity and mortality. In recent years, HCV treatment 
has dramatically improved due to the emergence of direct-acting 
antivirals. Sofosbuvir/daclatasvir (SOF/DCV)is a pan-genotypic 
regimen that is used to treat chronic hepatitis C patients. A pro-
spective observational study enrolling genotype 2 chronic hepatitis 
C patients evaluated the treatment effectiveness of SOF/DCV with 
or without ribavirin in Taiwan.34 The majority of patients under-
going SOF/DCV/ribavirin treatment had cirrhosis with or without 
decompensation, and a significant increase in the TC and LDL-
C levels after treatment was observed. Another prospective study 
evaluated the effectiveness of glecaprevir/pibrentasvir treatment 
and the resultant alterations pertinent to the lipid levels.35 Relevant 
findings indicated a remarkable elevation of the TC and LDL-C 
levels during and after treatment, and the HDL-C levels increased 
after treatment. The LDL-C/HDL-C ratio increased during treat-
ment but returned to baseline after treatment, and two possible 
explanations were clarified. One is the restoration of cholesterol 
synthesis along with improved liver function after the disappear-
ance of HCV, the other is the alleviation of hepatic inflammation 
associated with elimination of the HCV protein.

Inomata et al. intended to investigate the metabolic alterations 
of iron and lipids in chronic hepatitis C patients or those with HCV 
genotype 1b infection-related compensated cirrhosis after HCV 
eradication.36 They found that increased LDL-C levels were cor-
related with decreased erythroferrone, ferritin, and alanine ami-
notransferase levels only in men, suggesting an association be-
tween increased LDL-C and mitigated hepatic inflammation and 
fibrosis in addition to alleviated iron overload. Furthermore, they 
hypothesized that the principal sex hormone, testosterone, may ac-
count for these sex-related differences.

HDL-related biomarkers predict complications of cirrhosis

Upper gastrointestinal bleeding
Upper gastrointestinal bleeding (UGIB), a serious clinical sce-
nario, represents a major cause of morbidity and mortality on ac-
count of portal hypertension. Hrabovsky et al. found that the serum 
levels of TC, LDL-C, and HDL-C were significantly decreased in 
patients with acute UGIB, and further comparisons of the lipid 
profile in cirrhotic and noncirrhotic patients showed no signifi-
cant differences with the exception of HDL-C.37 They concluded 
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that both the synthetic and absorptive processes may be altered in 
patients with acute UGIB. Lower expression of markers with re-
spect to cholesterol absorption may also be attributed to disrupted 
food ingestion in the early phase after hemorrhage. Moreover, the 
concentration of phytosterols in plasma was low in the abovemen-
tioned study, indicating that cholesterol absorption is considerably 
changed in patients with cirrhosis.

Insulin resistance represents an early phenomenon during the 
course of HCV infection and is closely linked to the pathogenesis 
of hepatic fibrosis. Accordingly, it is suggested to be associated 
with the development of esophageal varices (EV). A study includ-
ing 100 compensated HCV cirrhotic patients without diabetes or 
metabolic syndrome has revealed that an insulin/HDL-C ratio of 
0.147 can predict the increased occurrence of EV, with a diagnostic 
accuracy of 0.822.38 Similarly, Hanafy et al. have reported that 
VLDL <16.5 mg/dL and an LDL/platelet count ratio >1 can predict 
advanced fibrosis, the presence of EVs, and endothelial dysfunc-
tion among patients with HCV-related cirrhosis.39

Moreover, it has been shown that HDL-C values ≤0.54 mmol/L 
can predict the 6-week mortality among HBV-related cirrhotic pa-
tients with acute gastrointestinal bleeding.40 Two possible interpre-
tations may account for this condition. First, HDL-C is regarded as a 
biomarker of liver function, which may further decrease in response 
to hepatocyte ischemia elicited by anemia and arterial hypotension; 
second, HDL-C has been identified as a modulator of both intrinsic 
and extrinsic coagulation cascades by in-vitro experiments.41

Portal hypertension
It is widely accepted that cirrhotic patients complicated with portal 
vein thrombosis are prone to dismal outcomes. HDL-C also has 
been identified to be independently associated with the 1-year 
mortality among patients with cirrhosis and portal vein thrombo-
sis.42 A prospective cohort study including 77 patients who under-
went a splenectomy due to portal hypertension indicated that the 
lipoprotein(a) concentration postoperatively was a reliable predic-
tor of portal and/or splenic vein thrombosis (PSVT).43 Further-
more, patients with PSVT exhibited higher lipoprotein(a) levels 
compared to those without PSVT following operation.

Bacterial infections
Bacterial infections are common causes of hospital re-admissions 
among patients with cirrhosis, with an estimated prevalence of 
25–46%.44,45 The main infections comprise spontaneous bacte-
rial peritonitis and urinary tract infections. The preponderance of 
evidence implicates the development of bacterial infections as a 
consequence of a dysregulated immune system, which advances 
progressively during the course of cirrhosis.46,47 Some dysbiosis 
patterns, like enrichment of Enterococceae/Proteobacteria and de-
pletion of the beneficial Lachnospiraceae, have been linked to the 
progression of cirrhosis.48 Moreover, Enterococci and Gram-neg-
ative bacteria (Pseudomonas aeruginosa, Klebsiella pneumoniae, 
and Escherichia coli) have been identified as the most frequent 
species to cause spontaneous bacterial peritonitis via pathological 
bacterial translocation.49 The presence of diabetes and low levels 
of HDL-C have been shown to be risk factors of bacterial infection 
in the context of HBV-related cirrhosis.50 However, the mecha-
nisms underlying the combined impact of diabetes and cirrhosis on 
the pathogenesis of bacterial infections are unclear. It has been pro-
posed that hyperglycemia disturbs the hemostasis of the immune 
system and facilitates a favorable microenvironment for bacterial 
growth.51 HDL-C suppresses macrophage-mediated inflammatory 

reactions relying on scavenging cholesterol particles.52

Relative adrenal insufficiency
Recent investigations have shown that cirrhosis would also re-
sult in relative adrenal insufficiency (RAI). Patients with RAI are 
prone to suffer from bacterial infections, sepsis, extrahepatic organ 
failures, and acute-on-chronic liver failure.53 Although the patho-
genesis of RAI remains elusive, metabolic disorder of cholesterol 
may play an essential role. Cirrhotic patients have been demon-
strated to have significantly lower serum cortisol than noncirrhotic 
patients.54 In addition, RAI is closely associated with the severity 
of liver dysfunction, an increased patient mortality, the synthesis, 
metabolism, and functional reserve of the liver, as well as a poor 
prognosis.

Piano et al. also have implicated that low levels of HDL-C are 
independently associated with RAI in acute decompensated cir-
rhosis.53 They confirmed that HDL-C may be responsible for a 
deficit of substrates contributing to steroidogenesis in cirrhosis. 
Moreover, they raised the possibility that inflammatory cytokines 
can directly affect adrenal glands or impede the production of ster-
oid competing with adrenocorticotropic hormone at the receptor 
level.55

Furthermore, Wentworth et al. have demonstrated that de-
creased HDL-C levels and diminished lecithincholesterol acyl-
transferase activity partially account for the development of RAI in 
decompensated cirrhotic patients.56 They proposed that cholesterol 
metabolism impairment results in inadequate substrate delivery to 
the adrenal gland, which is responsible for normal steroidogenesis.

HDL-related biomarkers predict mortality
In a retrospective observational cohort recruiting 191 patients, TC 
was a significant predictor for mortality in cirrhotic patients, and 
adding cholesterol to the traditional cirrhosis-specific scoring sys-
tem, i.e., the Model for End-Stage Liver Disease (MELD) score, 
could improve the prediction accuracy by 3%.7 Additionally, Trieb 
et al. have shown that HDL-C <17 mg/dL (0.44 mmol/L) and 
apoA-I <50 mg/dL indicated a 90-day mortality in cirrhotic pa-
tients.26 Another study also identified HDL-C ≤0.53 mmol/L as 
an independent predictor for the 30-day mortality in HBV-related 
decompensated cirrhotic patients.8 Based on receiver operating 
characteristic curve analyses, the prognostic performance for mor-
tality was similar between the HDL-C level and the MELD score. 
Notably, Cui et al. performed propensity score matching analysis 
to assess the prognostic value of HDL-C for short-term mortality.6 
Their findings denoted that HDL-C <0.4 mmol/L indicated a high 
180-day mortality risk in patients with cirrhosis. In addition, the 
HDL-C level had an incremental value to prognosticate the short-
term mortality against the MELD score or Child-Pugh class.

It is well known that inflammation is a common feature in 
patients with advanced cirrhosis and is associated with inferior 
outcomes.57 The monocyte-to-HDL-C ratio is regarded as a re-
cently proposed inflammatory biomarker. An elevated monocyte-
to-HDL-C ratio has been shown to be predictive of increased 
mortality in HBV-related decompensated cirrhotic patients.58 
The potential mechanisms involve that the inflammation triggers 
monocyte release into the peripheral blood and produces pro-in-
flammatory molecules, leading to acceleration of inflammatory 
reactions and adverse outcomes.59 Meanwhile, HDL-C serves as 
an anti-inflammatory lipoprotein by binding and neutralizing bac-
terial lipopolysaccharides to facilitate their excretion.60
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Lipoprotein-Z (LP-Z) is a recently identified free cholesterol-
rich LDL-like lipoprotein with hepatotoxicity. Plasma LP-Z is 
undetectable in the general population. In contrast, a study found 
that LP-Z was remarkably detectable in 30.8% of pretransplant 
cirrhotic patients.61 Furthermore, patients with cirrhosis exhibited 
low levels of circulating lecithincholesterol acyltransferase, which 
may account for the production of LP-Z. They also found that 
LP-Z was associated with a worse Child-Pugh class and a higher 
MELD score, rendering increased mortality in cirrhotic patients.

Future directions
Despite the increasing interest in the investigation of lipids/lipo-
proteins in cirrhosis, targeting metabolic processing of these bioac-
tive substances as a specific treatment has not been fully clarified. 
Moreover, it is pivotal to exploit the dynamic nature and mecha-
nistic insights pertinent to the roles of individual lipids in the de-
velopment and progression of cirrhosis. Further in-depth studies 
are necessary to dissect the mechanism of lipid metabolism and 
homeostasis in distinct stages within cirrhosis.

Conclusions
In summary, we herein review the potential roles of serum lipids and 
lipoproteins in the development of cirrhosis and the prognosis of cir-
rhotic patients in addition to the underlying mechanisms regarding 
their expression abnormalities. The effects of serum lipids on cir-
rhosis as evidenced by the current studies are deciphered compre-
hensively. However, more efforts are still warranted to determine the 
clinical relevance of serum lipids/lipoproteins in the context of cir-
rhosis in order to develop risk stratification and therapeutic strategies.
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